
Using Seastar
A manual for using HPC-systems especially targetted to the beowulf cluster “Seastar” of the

CMT research group of the University of Antwerp

Nikolas Garofil

February 26, 2016

On a sunny afternoon at the UA,
I was threatened: “Explain Seastar !!! Okay ?!?”

So I started writing documentation,
with everything but it’s location,

’cause that is TOP-secret, so I’ll never say !

1 Disclaimer

This manual is distributed in the hope that it will be useful, but without any
warranty, without even the implied warranty of not setting the printer on fire
by printing it out, destroying your computer by reading it with a pdf-reader, ...

This is still an alpha version of the manual, most likely it will contain a
lot of grammatical and spelling errors. There might also be errors in the code
fragments which could cause serious damage.

!!! Do not run anything that you do not fully understand !!!

2 Some details about Seastar

It’s probably best to skip this section if you’ve never used Seastar before, this
is more of a technical reference. . .

Seastar is a Beowulf cluster1 with the following specifications:

• At the moment it has 25 nodes that can be used for calculating.

• Nodes are named beo-XX where XX is an integer from 16 to 82.

• beo-00→beo-16: old nodes, not sufficiently powerful anymore to be of
use (or defective and not sufficiently cost-effective to be repaired).

• beo-17→beo-28: older nodes but still powerful enough to use

• beo-29→beo-38: new nodes

• beo-39→beo-79: reserved names

1See http://en.wikipedia.org/wiki/Beowulf_cluster for more information

1

http://en.wikipedia.org/wiki/Beowulf_cluster

• beo-80→beo-82: GPU2-nodes. Their CPU’s3 are not particularly pow-
erful but their GPU’s easily compensate for this

• There are also a couple of “special nodes”:

– seastar-64:

∗ Login node, the only node in the cluster that you can reach
directly from your PC/laptop

∗ Its FQDN4 is seastar-64.cmi.uantwerpen.be and its IPv4-
address is 143.129.131.159.

∗ also has the name opt-dev, but this name can only be used from
within the cluster.

∗ Use this node to transfer files and submit jobs but do not run
code on this node.

– seastar: Master-node, of no concern to you. I’m only mentioning it
because you could accidently notice its existence and run into con-
fusing problems because of the name.

– sn-1: Helps the masternode to handle the filesystem, this node is
also of no concern to you.

– seamouse: This is actually not a node but a completely separate
system that handles all servertasks for CMT. It’s listed because for
a couple of its tasks it has a pretty tight connection with Seastar.

• Every node is connected with 2 networks:

– The Ethernet5 network

∗ Speed: Fast (Gigabit cards and switches with CAT-6 cabling)

∗ Network interface on the nodes: eth0

∗ IPv4-address seastar-64: 192.168.52.250

∗ IPv4-address beo-X : 192.168.52.X

∗ Netmask: /24

– The InfiniBand6 network

∗ Speed: Super-fast (IB DDR as “weakest” link)

∗ Network interface on the nodes: ib0

∗ IPv4-address seastar-64: N/A7

∗ IPv4-address beo-X : 192.168.51.X

∗ Netmask: /24

• The operating system is a highly modified version of Ubuntu8 but still has
all properties of a regular GNU/Linux distribution.

2See http://en.wikipedia.org/wiki/Graphics_processing_unit for more information
3See http://en.wikipedia.org/wiki/Central_processing_unit for more information
4See http://en.wikipedia.org/wiki/Fully_qualified_domain_name for more information
5See http://en.wikipedia.org/wiki/Ethernet for more information
6See http://en.wikipedia.org/wiki/InfiniBand for more information
7Seastar-64 is not connected to the InfiniBand-network and never will be, only nodes that

actually calculate should have InfiniBand.
8See http://en.wikipedia.org/wiki/Ubuntu_(operating_system) for more information

2

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Fully_qualified_domain_name
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/InfiniBand
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)

• To manage all available resources the cluster uses TORQUE9 . It combines
this with Maui10 which makes sure the scheduling of jobs works fine.

• The filesystem of the whole cluster is Lustre11 with a ZFS12-backend. It’s
mounted on /l and there is also a symlink /data that points to /l . Use
this filesystem as permanent storage.

• /l/home contains all homedirectories of regular users and also a directory
/l/home/cdsrv1 filled with software you can use on the cluster or your
desktop system.

• Although every node also has a lot of other dirs that you shouldn’t worry
about, there is one dir that I do want you to know about: /scratch is a
filesystem that’s very useful to store temporary results of calculations. It
differs from /l in the following things:

– Sharing: /l is shared by all nodes on the cluster, which causes it
to look the same on the whole cluster. Although you can also see
/scratch on the whole cluster, every node has a different version of
this filesystem, so files saved in /scratch on node A are not visible
on node B.

– Speed: /l is a filesystem on harddisks shared on a network which
makes it relatively slow. /scratch is a filesystem in memory not
shared with anything so it’s extremely fast.

– Size: This depends from node to node but it’s safe to say that /l is
approximately 1000x the size of /scratch on a random node. But
this certainly does not mean that /scratch is too small to be useful.
It just means /l is humongous.

The properties above make /scratch very useful to save intermediate
results of jobs before saving the final results on /l.

• Buildenvironment: Everything you need to write and build software should
be available, we have interpreters for fortran (ifort and gfort), python,
php, perl, ... and compilers for C and languages similar to C (gcc, icc,
mpicc, nvcc). If you don’t know what compiler/interpreter to use for
the languages that have multiple options, I would recommend using those
from gnu (gcc and gfort).

3 Getting started

3.1 Account-creation

In order to get started you’ll need an account, so contact me and I’ll create it
for you. Most of the account names on seastar start with the first character of

9See http://en.wikipedia.org/wiki/TORQUE for more information
10See http://en.wikipedia.org/wiki/Maui_Cluster_Scheduler for more information
11See http://en.wikipedia.org/wiki/Lustre_(file_system) for more information
12See http://en.wikipedia.org/wiki/ZFS for more information

3

http://en.wikipedia.org/wiki/TORQUE
http://en.wikipedia.org/wiki/Maui_Cluster_Scheduler
http://en.wikipedia.org/wiki/Lustre_(file_system)
http://en.wikipedia.org/wiki/ZFS

the first name of the user followed by the last name (e.g. someone named Kurt
Cobain would receive the username “kcobain”).

I’ll also ask you to choose a password. I might forget to tell you but make
sure that this is a strong password. You can do this by following the usual rules
that most sites demand (9 chars or longer, mix in special chars, don’t base it
on recognizable words, ...) but if you don’t mind typing in long passwords then
I would recommend XKCD-style13 passwords. Whatever password you choose,
make sure you don’t use it anywhere else.

3.2 Logging in

In this document I’m assuming that you are using a POSIX-compliant14 oper-
ating system. To be honest I have to admit that it’s also possible to connect to
the cluster from other operating systems, so why am I doing this ?

• Seastar itself is running a POSIX-compliant OS (GNU/Linux). It’s easier
to use if you already have some experience from using similar operating
systems on your PC(s)

• Other operating systems, especially Microsoft Windows, are known to
cause strange and hard to diagnose bugs. . .

I also have to assume that you already have some basic experience with GNU/Linux15.
Otherwise I would have to explain every tiniest step and this document would
become unreadably long.

So now your account is created. You should now be able to login if you start
an SSH16-client and connect to server seastar-64.cmi.uantwerpen.be17 with
your username and password and use the TCP-port18 that’s registered for ssh.
For our example user “Kurt Cobain” this would work like this:

1. Start a shell: You can do this by looking in the menu for a program named
“terminal”, “console” or something very similar. Starting this should open
a (probably black) window with a prompt and the possibility to enter
commands behind this prompt. The prompt differs a bit from system to
system but it will probably look similar to this:

kurt@nirvana ~ $

kurt is here your username on your pc and nirvana the hostname of your
pc.

2. Login on Seastar: This is really easy, use the command below, enter a

password when requested19 and you will be connected. (The password

13See http://imgs.xkcd.com/comics/password_strength.png for more info
14See http://en.wikipedia.org/wiki/POSIX for more information. The best known exam-

ples of POSIX-compliant operating systems are Mac OS X and the GNU/Linux distributions
15If not, every year the admins of CALCUA are holding a “Introduction to Linux” course

that I can strongly recommend, see here for more info: https://www.uantwerpen.be/en/

research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/

calcua/training/intro-linux/
16See http://en.wikipedia.org/wiki/Secure_Shell for more information
17Depending on how you are connecting you can skip the .cmi.uantwerpen.be-part. For

the sake of brievity I’m skipping it in the rest of the document. If you are not sure if you can
skip it: keep it.

18You will not need to enter this in most ssh-clients, but in case you do: it’s 22
19You can also use ssh-keys to login. I would recommend using keys but I’m not obligating

you. More on ssh-keys will follow in section 7

4

http://imgs.xkcd.com/comics/password_strength.png
http://en.wikipedia.org/wiki/POSIX
https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/calcua/training/intro-linux/
https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/calcua/training/intro-linux/
https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/calcua/training/intro-linux/
http://en.wikipedia.org/wiki/Secure_Shell

won’t be visible on the screen, this is normal behaviour)

kurt@nirvana ~ $ ssh kcobain@seastar-64

The screen will now show some uninteresting information about the clus-
ter and on the last line you will have a prompt that looks like this:

0 kcobain@seastar-64 .../ $

In case you are wondering what the number at the front is, it’s the return-
code20 of the last command you executed. When you want to logout, just
type the command exit and you’ll be disconnected.

3. Submit a script: This step will be handled in detail later, but for now I’ll
tell you the basic steps:

• Create a shellscript that runs the command(s) you want to run: We’ll
let Kurt create nevermind.sh

• Submit the script and you’ll see it’ll get a Job ID:

0 kcobain@seastar-64 .../ $ qsub nevermind.sh

314159. beosrv -c

• When the job is finished, you’ll probably want to read files contain-
ing the standard output (STDOUT) and the standard error output
(STDERR)21 from the job:

0 kcobain@seastar-64 .../ $ cat nevermind.sh.o314159

Here we are now , entertain us...

0 kcobain@seastar-64 .../ $ cat nevermind.sh.e314159

Oops , there was a suicide

4. Transferring files: There are multiple ways to transfer files between your

PC and the cluster that use a GUI22 but the 2 most popular methods use
the shell:

• kurt@nirvana ~ $ scp seastar-64:/foo/somefile /bar

This will copy the file somefile in the directory /foo on seastar-64
to the directory /bar on your system. Scp has a lot of options to
copy files, run man scp to see all the options.

• If you want to copy a lot of files/directories at the same time, it’s
probably better to use rsync. A lot of files means that you will prob-
ably also want the options -Havz, these options make sure that all
properties of the files remains the same in the destination, compres-
sion is used to speed it up and that everything is a bit more verbose
so that you’ll be able to follow the process. For example: the com-
mand below makes a copy of the whole /foo directory on seastar-64
to your system and names it bar

kurt@nirvana ~ $ rsync -Havz seastar-64:/foo/ /bar/ 23

20See http://en.wikipedia.org/wiki/Return_code for more information
21See http://en.wikipedia.org/wiki/Standard_streams for more information
22See http://en.wikipedia.org/wiki/GUI for more information
23The / after foo and bar is NO mistake

5

http://en.wikipedia.org/wiki/Return_code
http://en.wikipedia.org/wiki/Standard_streams
http://en.wikipedia.org/wiki/GUI

4 Writing and submitting scripts

4.1 What qsub does

In section 3 I glanced over how you should submit scripts. I’ll now look at
how you should write scripts and give some more info about submitting
them. The most important thing that you should know is: qsub submits
the scripts and transforms them into jobs. All the rest are just details.

I even have some good news: If you don’t want to do anything “fancy”
and just want to run a simple program you don’t even need a script. You
can just use pipe the commands to qsub:

0 kcobain@seastar-64 .../ $ echo "sing 'Smells Like Teen Spirit'" | qsub

314160. beosrv -c

What’s now happening is the following:

• echo sends the text sing ’Smells Like Teen Spirit’ to qsub, a
command part of the cluster’s job scheduler.

• The job scheduler transforms this text into a command, the command
sing with argument ’Smells Like Teen Spirit’

• The job scheduler creates a new job that will execute this command
later. The user didn’t pass any options so the job has all the default
options. As job id the next free number is given and this number
(314160.beosrv-c) is shown by qsub to the user.

• The job scheduler places the job in a queue (this will be the default
one because the user didn’t specify anything). Most likely the cluster
is running a lot of jobs at the moment so our new job has to wait for
a while in the queue.

• Somewhere in the near future the job scheduler gets word from the
resource manager that there are enough free resources available for
our job and the job scheduler might than decide that the job can
launch. Notice that jobs are not necessarily launched in the order
that they are submitted ! The scheduler takes a lot of information
into consideration to decide when to launch a job. In short it boils
down to a combination of the following 2 rules:

– The less resources a job needs, the quicker it starts.

– Jobs that are already waiting for a long time will start quicker.

• So now that the scheduler decides that the job can launch, it asks
the resource manager to reserve the necessary resources and launch
the job.

• The resource manager lets the command run on a node but it redi-
rects the STDOUT and STDERR streams to 2 files.

• When the job is finished those files are visible on your login node as
STDIN.o314160 (STDOUT) and STDIN.e314160 (STDERR).
In case you are wondering why the name is STDIN, it’s because qsub
received the command on it’s standard input and because no name
was given to the job. The number 31460 is the job id of the job.

6

Most likely you won’t like the default options for the jobs so let’s see how
we can change them. I’ll show you how to change one option now and I’ll
give you a list with the other possible options later:

0 kcobain@seastar-64 .../ $ echo "sing 'Come as you are'" | qsub -N singasong

314161. beosrv -c

This is pretty much the same job as the previous with one, but by us-
ing the -N option we gave it the name singasong and the 2 files that
will be created after the job is finished will be singasong.o314161 and
singasong.e314161

4.2 Writing scripts

The previous way of creating jobs works, but usually it’s better to write a
script. When you write a script you don’t have to pipe anything to qsub,
instead you just run qsub (with the arguments you want) and behind the
last argument you place the path to the script:

0 kcobain@seastar-64 .../ $ qsub -N singasong teenspirit.sh

314162. beosrv -c

As you can see, the scriptname ends with .sh, the reason for this is that
the script is a shell script. You don’t have to end your scripts with .sh but
it’s a convention that most people follow so I would recommend doing the
same thing if you don’t want to complicate things. Although the submit
scripts don’t have to be shell scripts (you can also write submit scripts in
perl, python, ...) I would recommend using regular shell scripts written in
(ba)sh24. Other scripts can cause strange problems25.

Covering shell scripts completely will lead us to far. For now I’ll have to
be very brief about it:

• Make sure the first line in your script is always a shebang26 (i.d. the
2 characters # and !) followed by the path of the shell-interpreter
(e.g. /bin/bash, /bin/sh, ...). So you first line should look like this:
#!/bin/bash

• All the following lines will be interpreted as if you typed them in on
that specific shell

For example, this could be the submitscript of the last job (teenspirit.sh):

#!/bin/bash

echo Here we are now , entertain us...

The following is a example of a submitscript that contains some interesting
features of bash:

24See http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29 for more information
25Note that it’s perfectly OK to start a perl, python, whatever... script from inside a

shell-submitscript
26See http://en.wikipedia.org/wiki/Shebang_(Unix) for more information

7

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Shebang_(Unix)

#!/bin/bash

#Lines starting with # are comments and are ignored by bash

#Notice that ‘ instead of ’ is used on the lines with seq and mktemp

#The difference between these chars is important !

#The following command is the first that runs ,

#bash looks for it in the current directory

./ runsfirst

#The following command is searched for in the directory

#that is the PATH -variable of bash

runsnext

#The following command starts running in parallel with the

#rest of the script right after ’runsnext ’ is finished

#Although the node sees it as a separate process , the cluster

#still sees it as 1 job together with the rest of the script

./ runparallel &

#the following runs ’runalot ’ 10 times

for i in ‘seq 1 10‘ ; do ./ runalot ; done

#the following creates a temporary file and saves its

#path in the variable MYTEMPFILE

MYTEMPFILE=‘mktemp ‘

#the next command ’s output is sent to the temporary file

./ sendtofile > $MYTEMPFILE

#the next command receives its input from the file

./ receivefromfile < $MYTEMPFILE

#the following removes the tempfile

rm $MYTEMPFILE

#the following line checks if the tempfile is really deleted

if [! -e $MYTEMPFILE] ; then echo temporary file is removed ; done

#the following command is the last that runs.

#it ’s not located in the current directory

/l/home/kcobain/somewhere/runslast

Arguments that you pass to qsub can also be placed in the submitscript
by adding lines in this format right behind #!/bin/bash:

#PBS -argument1 optionsforargument1

#PBS -argument2 optionsforargument2

So if we change teenspirit.sh like this:

#!/bin/bash

#PBS -N singasong

echo Here we are now , entertain us...

then we can submit it like this and it would still have the name “singa-
song”:

0 kcobain@seastar-64 .../ $ qsub teenspirit.sh

314163. beosrv -c

8

4.3 PBS-options

I’m only mentioning the options here that I think are actually useful for
you. For a whole list, see man qsub .

Option Arguments Explanation
-a [[[[CC]YY]MM]DD]hhmm[.SS] Do not launch the job before this time. (e.g. -a 2150

will make sure the job is not launched before 9:50pm
today (or tomorrow if it’s already after 21:50) and
with -a 11250345.07 it won’t start before 03:45:07
on the 25th of november)

-c enabled Enables checkpointing of the job, the job will run a
tiny bit slower (nanoseconds, not noticable) but it
has the advantage that if for some reason the cluster
needs to be rebooted the job can be saved first. It’s
always a good idea to use this option

-I Makes job “interactive”: when it starts running, the
3 standard streams will be connected to the shell
where you ran qsub, this makes it look as if the job
is running in that shell

-j oe or eo STDOUT and STDERR of the job will be joined to-
gether, with oe they both end up in STDOUT, with
eo they land in STDERR

-l resourcelist A list of resources and their values separated by
comma’s that the job will need that are different from
the default values. (e.g. -l walltime=50,nodes=3

to request that the job can run on 3 nodes for 50 sec-
onds27). See also the resources-table in section 4.3.1.

-m abe You will receive a mail when the job is aborted, when
it begins or when it ends. (You’re not obliged to use
all 3 of these chars)

-M kurt.cobain@nirvana.com Mail-address used by -m. If you want multiple peo-
ple to receive the mail, seperate the addresses with
commas

-N name Gives the job a name (max. 15 chars long and the
first char should be alphabetic).

-q node, queue or node@queue Tells the cluster where the job should be executed.
The node@queue option is handy because a node can
be part of multiple queues and in that case it has
multiple versions of default resources

-t n The job will be submitted n times.28

-V The job will receive all environment variables avail-
able in the shell where you ran qsub (seastar-64’s
bash). If you want to know what these vars are, run
set

-v var1=value1[,var2=value2...] A list of environment variables and their values that
the job will need

-w /some/where Set the default working directory to /some/where

9

-W attributelist A list of attributes and their values separated
by commas that the job will need. (e.g. -W

depend=afterok:314164.beosrv-c to request that
this job gets scheduled when 314164.beosrv-c fin-
ishes without any errors) Be careful if you start com-
bining multiple attributes, you can get some strange
effects! See also the attributes-table in section 4.3.2

-X Enables X-forwarding29

-z The job id will not be sent to STDOUT when you
submit the job.

4.3.1 Resources

There are a lot of different resources that you can request, for a full list see
http://docs.adaptivecomputing.com/torque/4-1-3/help.htm#topics/

2-jobs/requestingRes.htm. If you are overwhelmed by the options, then
just using the default instead of choosing options yourself is mostly a good
choice. This is a list with the most popular options:

Option Arguments Explanation
cput [[HH:]MM;]SS Maximum amount of CPU-time used by all

processes in the job
walltime [[HH:]MM;]SS Maximum amount of real time during which

the job can be in the running state
nodes options Reserve a list of nodes, see the examples on the

website mentioned above
mem size30 Maximum amount of memory the job can use
pmem size Maximum amount of memory any single pro-

cess can use
pvmem size Maximum amount of virtual memory any sin-

gle process can use
vmem size Maximum amount of virtual memory

4.3.2 Attributes

Attributes are useful if you want to arrange the order of your own jobs, to
see a full list run man qsub and scroll to the -W additional attributes

27This does not mean that job will only stop after 50 seconds or that it will certainly run
on 3 nodes. If could very well be that it finishes after 2 seconds and only needs 1 node if it’s a
tiny job. You should always make sure that your job requests the resources it will need. It’s
always safer to ask a bit more than you need.

28This option also accepts different arguments to tune the jobid (you probably don’t need
this), see the man page for more info

29If your job creates windows, with X-forwarding they will be drawn on your screen instead
of that of the cluster

30Sizes need a suffix (e.g 123kb). See also the url mentioned above for more info

10

http://docs.adaptivecomputing.com/torque/4-1-3/help.htm#topics/2-jobs/requestingRes.htm
http://docs.adaptivecomputing.com/torque/4-1-3/help.htm#topics/2-jobs/requestingRes.htm

option. But the most important attributes are the following

Option Arguments Explanation
depend=afterok: jobid This job can only be scheduled af-

ter the job jobid has terminated
without errors

depend=beforeok: jobid If this job has terminated without
errors, then job jobid can begin

depend=afterany: jobid The same thing as afterok but you
can ignore errors

depend=beforeany: jobid The same thing as beforeok but
you can ignore errors

depend=afternotok: jobid The same thing as afterok but re-
place “without” by “with”

depend=beforenotok: jobid The same thing as beforeok but
replace “without” by “with”

5 Checking stuff

Now that you know everything that you should know to create and submit
jobs, you’ll probably also want to be able to monitor them. Seastar has
multiple ways to follow them of which there are 3 that regular users should
know about31:

• qstat to ask for a list of your jobs:
0 kcobain@seastar-64 .../ $ qstat -a -u kcobain

beosrv -c:

Req ’d Req ’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------

314165. beosrv -c kcobain infiniba ComeAsYouAre 27183 1 1 1gb 300:00:00 R 299:59:24

314166. beosrv -c kcobain infiniba Bleach 27184 1 1 2gb 300:00:00 R 299:49:24

314167. beosrv -c kcobain infiniba Nevermind 27185 1 1 3gb 300:00:00 R 299:39:24

Most of the info shown is not really important, but what is impor-
tant is the difference between “Elap Time” and “Req’d Time”. This
difference is how long your job can still run. Also important is the
character below S, this has the following meaning:

– C: Job is completed after having run

– E: Job is exiting after having run

– H: Job is held

– Q: Job is queued, eligible to run

– R: Job is running

– T: Job is being moved to a new location

– W: Job is waiting for its execution time

– S: Job is suspended

• showstart to estimate when your job will launch:

31There is a lot of other software on seastar that is useful to monitor jobs, most will probably
not be of any interest to you but in case you think I’m wrong: Take a look at http://docs.

adaptivecomputing.com/maui/a.gcommandoverview.php

11

http://docs.adaptivecomputing.com/maui/a.gcommandoverview.php
http://docs.adaptivecomputing.com/maui/a.gcommandoverview.php

0 kcobain@seastar-64 .../ $ showstart 314168.beosrv-c

job 314168. beosrv -c requires 2 procs for 0:33:20

Estimated Rsv based start in 1:04:55 on Fri Jul 15 12:53:40

Estimated Rsv based completion in 2:44:55 on Fri Jul 15 14:33:40

Estimated Priority based start in 5:14:55 on Fri Jul 15 17:03:40

Estimated Priority based completion in 6:54:55 on Fri Jul 15 18:43:40

Estimated Historical based start in 00:00:00 on Fri Jul 15 11:48:45

Estimated Historical based completion in 1:40:00 on Fri Jul 15 13:28:45

Best Partition: fast

• You’ll probably also want to known what queues exist, you can check
them like this:

0 kcobain@seastar-64 .../ $ qmgr -c 'p s'

#

Create queues and set their attributes.

#

#

Create and define queue fast

#

create queue fast

set queue fast queue_type = Execution

set queue fast Priority = 10

set queue fast resources_max.nodect = 22

set queue fast resources_max.pmem = 1gb

set queue fast resources_max.walltime = 48:00:00

set queue fast resources_default.nodect = 1

set queue fast resources_default.nodes = 1

set queue fast resources_default.pmem = 500mb

set queue fast resources_default.walltime = 48:00:00

set queue fast resources_available.nodect = 26

set queue fast enabled = True

set queue fast started = True

#

Create and define queue stress

...and so on...

– Lines starting with # can be ignored

– Every queue definition starts with create queue somename

– The default queue properties are set with
set queue fast nameofthequeue somesetting = somevalue

– Queues can only be used if the definition contains the lines:
set queue nameofthequeue enabled = True

set queue nameofthequeue started = True

This command does not show which queues contain which nodes, so
here is a small list:

12

fast stress Qgpu uhimem himem dque infiniband interactive
beo-01 X X X X
beo-02 X X X X
beo-03 X X X X
beo-04 X X X X
beo-16 X X X X
beo-17 X X X X
beo-18 X X X X
beo-19 X X X X
beo-20 X X X X
beo-21 X X X X
beo-22 X X X X
beo-23 X X X X
beo-24 X X X X
beo-25 X X X X
beo-26 X X X X
beo-27 X X X X
beo-28 X X X X
beo-29 X X X
beo-30 X X X
beo-31 X X X
beo-32 X X X
beo-33 X X X X
beo-34 X X X
beo-35 X X X
beo-36 X X X X
beo-37 X X X X
beo-38 X X X X
beo-80 X
beo-81 X
beo-82 X

• You can also use programs like showq, showres, checkjob, mdiag,
showstate, showstats and so on to view even more info but the
most important info is retrievable from the commands shown above

6 Running interactive programs

If you are planning to run interactive programs, make sure you know
about X-forwarding and showstart. The most interesting script here is
runmatlabXXX. It works like this: You replace the XXX by a version num-
ber (most likely this will be 714 for 7.14). As first argument you give
the amount of hours (as integer) you want matlab to run, all the other
arguments are passed on to matlab itself. So Kurt Cobain would run
something like this if he wanted to run matlab -desktop for almost32 3
hours:

32“almost” because you should always reserve more time than you need

13

0 kcobain@seastar-64 .../ $ runmatlab714 3 -desktop

7 Differences with the VSC-systems

Many of you will also have an account on the VSC-system’s (also known as
Calcua or Turing and Hopper), these are the most important differences:

• Seastar is pretty small compared to Turing and Hopper, this might
lead you to think that your jobs will run faster on those clusters
BUT remember that you have to share that hardware with a LOT of
other people. I would recommend to use what’s available when it’s
available.

• Turing and Hopper are not tuned to physics. Not all of the software
that you are using on Seastar is already available on the Calcua-
systems. If you need anything that is not yet available, contact
hpc@uantwerpen.be

• On the calcua system’s, you’ll have to use the module commands to
decorate the environment where you are going to calculate.

• To login on the calcua systems you will need ssh-keys. To login on
seastar ssh-keys are optional but not obligated (I’m strongly recom-
mending them). As promised a while ago I was going to explain how
to generate ssh-keys, it’s actually really easy:

– Run ssh-keygen . This will create the following 2 files in your
homedir that form your key: .ssh/id rsa (the private part,
nobody except you needs this) and .ssh/id rsa.pub (the public
part, this should land on every system where you want to use
it). During this procedure a passphrase will be asked, this is a
password that protects your key so that you are the only one
that can use it. I would recommend setting a passphrase but if
you don’t want to use a passphrase, just press enter when it’s
requested.

– To get the public key on seastar run ssh-copy-id -i kcobain@seastar-64

(obviously replacing kcobain with your username)

– To get the public key on the VSC-systems, contact hpc@uantwerpen.be

– If it worked you should now be able to ssh to the systems that
have your public key without having to enter a password. If you
created a key with passphrase, the passphrase will be asked.

Obviously there are also a lot of smaller differences hidden away. If you are
planning to work with the VSC-system I would recommend that you start
here: https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/
core-facilities/core-facilities/calcua/support/

8 Seamouse’s services

Seamouse does a lot of things of which the following might be interesting
for you:

14

mailto:hpc@uantwerpen.be
mailto:hpc@uantwerpen.be
https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/calcua/support/
https://www.uantwerpen.be/en/research-and-innovation/research-at-uantwerp/core-facilities/core-facilities/calcua/support/

• It runs a printserver for the 4 CMT-printers and the big printer on
the 4th floor. You use it like this:

– Surf to http://seamouse:49631/printers/

– Copy the link to the printer that you want to add (e.g. http:

//seamouse:49631/printers/U305BW)

– Start installing a new printer but make you sure you choose “add
by url” and use the link you copied

• It runs a webserver, everything that’s placed on seastar-64:/l/home/public html/

will be hosted by seamouse (e.g. /l/home/public html/kcobain/mymusic

will be visible as http://cmt.uantwerpen.be/kcobain/mymusic).
Note that the it can take up to 1 hour before the data is available
online ! The webserver is updated every hour at ±5 minutes after
the hour33.

9 Questions and “fake” bugs

... I am waiting for input from the reader here ...

You just reached the end of the documentation.
Contact me for even more information,

Also, report what’s unclear,
I will fix it, don’t fear!

And when bored: Feel free to write a translation !

33This might change to a better system in the near future

15

http://seamouse:49631/printers/
http://seamouse:49631/printers/U305BW
http://seamouse:49631/printers/U305BW

	Disclaimer
	Some details about Seastar
	Getting started
	Account-creation
	Logging in

	Writing and submitting scripts
	What qsub does
	Writing scripts
	PBS-options
	Resources
	Attributes

	Checking stuff
	Running interactive programs
	Differences with the VSC-systems
	Seamouse's services
	Questions and ``fake'' bugs

